368 research outputs found

    Global modelling of continental water storage changes ? sensitivity to different climate data sets

    Get PDF
    International audienceSince 2002, the GRACE satellite mission provides estimates of the Earth's dynamic gravity field with unprecedented accuracy. Differences between monthly gravity fields contain a clear hydrological signal due to continental water storage changes. In order to evaluate GRACE results, the state-of-the-art WaterGAP Global Hydrological Model (WGHM) is applied to calculate terrestrial water storage changes on a global scale. WGHM is driven by different climate data sets to analyse especially the influence of different precipitation data on calculated water storage. The data sets used are the CRU TS 2.1 climate data set, the GPCC Full Data Product for precipitation and data from the ECMWF integrated forecast system. A simple approach for precipitation correction is introduced. WGHM results are then compared with GRACE data. The use of different precipitation data sets leads to considerable differences in computed water storage change for a large number of river basins. Comparing model results with GRACE observations shows a good spatial correlation and also a good agreement in phase. However, seasonal variations of water storage as derived from GRACE tend to be significantly larger than those computed by WGHM, regardless of which climate data set is used

    Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling

    Get PDF
    Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future

    Water footprints of cities indicators for sustainable consumption and production

    Get PDF
    Water footprints have been proposed as sustainabilityindicators, relating the consumption of goods likefood to the amount of water necessary for their productionand the impacts of that water use in the source regions. Wefurther developed the existing water footprint methodology,by globally resolving virtual water flows from production toconsumption regions for major food crops at 5 arcmin spatialresolution. We distinguished domestic and internationalflows, and assessed local impacts of export production. Applyingthis method to three exemplary cities, Berlin, Delhiand Lagos, we find major differences in amounts, composition,and origin of green and blue virtual water imports,due to differences in diets, trade integration and crop waterproductivities in the source regions. While almost all ofDelhi’s and Lagos’ virtual water imports are of domestic origin,Berlin on average imports from more than 4000 km distance,in particular soy (livestock feed), coffee and cocoa.While 42% of Delhi’s virtual water imports are blue waterbased, the fractions for Berlin and Lagos are 2 and 0.5 %, respectively,roughly equal to the water volumes abstracted inthese two cities for domestic water use. Some of the externalsource regions of Berlin’s virtual water imports appear tobe critically water scarce and/or food insecure. However, forderiving recommendations on sustainable consumption andtrade, further analysis of context-specific costs and benefitsassociated with export production will be required

    Global-scale analysis of river flow alterations due to water withdrawals and reservoirs

    Get PDF
    Global-scale information on natural river flows and anthropogenic river flow alterations is required to identify areas where aqueous ecosystems are expected to be strongly degraded. Such information can support the identification of environmental flow guidelines and a sustainable water management that balances the water demands of humans and ecosystems. This study presents the first global assessment of the anthropogenic alteration of river flow regimes, in particular of flow variability, by water withdrawals and dams/reservoirs. Six ecologically relevant flow indicators were quantified using an improved version of the global water model WaterGAP. WaterGAP simulated, with a spatial resolution of 0.5 degree, river discharge as affected by human water withdrawals and dams around the year 2000, as well as naturalized discharge without this type of human interference. Compared to naturalized conditions, long-term average global discharge into oceans and internal sinks has decreased by 2.7% due to water withdrawals, and by 0.8% due to dams. Mainly due to irrigation, long-term average river discharge and statistical low flow <i>Q</i><sub>90</sub> (monthly river discharge that is exceeded in 9 out of 10 months) have decreased by more than 10% on one sixth and one quarter of the global land area (excluding Antarctica and Greenland), respectively. <i>Q</i><sub>90</sub> has increased significantly on only 5% of the land area, downstream of reservoirs. Due to both water withdrawals and reservoirs, seasonal flow amplitude has decreased significantly on one sixth of the land area, while interannual variability has increased on one quarter of the land area mainly due to irrigation. It has decreased on only 8% of the land area, in areas downstream of reservoirs where consumptive water use is low. The impact of reservoirs is likely underestimated by our study as small reservoirs are not taken into account. Areas most affected by anthropogenic river flow alterations are the Western and Central USA, Mexico, the western coast of South America, the Mediterranean rim, Southern Africa, the semi-arid and arid countries of the Near East and Western Asia, Pakistan and India, Northern China and the Australian Murray-Darling Basin, as well as some Arctic rivers. Due to a large number of uncertainties related e.g. to the estimation of water use and reservoir operation rules, the analysis is expected to provide only first estimates of river flow alterations that should be refined in the future

    Integrating risks of climate change into water management

    Get PDF
    The Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change critically reviewed and assessed tens of thousands of recent publications to inform about the assess current scientific knowledge on climate change impacts, vulnerability and adaptation. Chapter 3 of the report focuses on freshwater resources, but water issues are also prominent in other sectoral chapters and in the regional chapters of the Working Group II report as well as in various chapters of Working Group I. With this paper, the lead authors, a review editor and the chapter scientist of the freshwater chapter of the WGII AR5 wish to summarize their assessment of the most relevant risks of climate change related to freshwater systems and to show how assessment and reduction of those risks can be integrated into water management

    Global impacts of energy demand on the freshwater resources of nations

    Get PDF
    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy

    Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography

    Get PDF
    This work deals with the issue of damage growth in thin woven composite laminates subjected to tensile loading. The conducted tensile tests were monitored on-line with an infrared camera, and tested specimens were analysed using Scanning Electron Microscopy (SEM). Combined with SEM micrographs, observation of heat source fields enabled us to assess the damage sequence. Transverse weft cracking was confirmed to be the main damage mode and fiber breakage was the final damage leading to failure. For cracks which induce little variation of specimen stiffness, the classic “Compliance method” could not be used to compute energy release rate. Hence, we present here a new procedure based on the estimation of heat source fields to calculate the energy release rate associated with transverse weft cracking. The results are then compared to those computed with a simple 3D inverse model of the heat diffusion problem and those presented in the literature

    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Get PDF
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI
    corecore